هوش مصنوعی چیست؟ – به زبان ساده + مسیر یادگیری
اگر بخواهیم سادهترین تعریف از هوش مصنوعی را ارائه دهیم یا به هوش مصنوعی چیست پاسخ دهیم، میتوانیم بگوییم: هوش مصنوعی مجموعهای از سیستمهای کامپیوتری است که میتوانند بسیاری از کارها مانند استدلال کردن، تصمیمگیری، حل مسئله و غیره را تا حد زیادی شبیه انسان و گاهی حتی بهتر و دقیقتر از انسان انجام دهند. لازم است اشاره کنیم که تا همین چند سال پیش، بسیاری از مواردی که به آنها اشاره شد، تنها توسط انسان انجام میشدند و سیستمهای کامپیوتری در انجام آنها کم توان یا ناتوان بودند
در سالهای اخیر نوآوریها و پیشرفتهای بسیاری در زمینه هوش مصنوعی پدید آمده که در گذشته تنها در حوزه فیلمهای علمی تخیلی مورد تصور بودند، اما اکنون کمکم به وسیله رباتهای هوش مصنوعی به واقعیت تبدیل شدهاند. در این مقاله از مجله فرادرس ابتدا به طور جامع به این سوال پاسخ داده شده است که هوش مصنوعی چیست و سپس به مهمترین مباحث و مفاهیم مرتبط با هوش مصنوعی پرداخته میشود.
هوش مصنوعی چیست؟
هوش مصنوعی یا به اختصار AI، یکی از شاخههای علوم کامپیوتر است که با بکارگیری مجموعهای از تکنولوژیها به کامپیوترها این امکان را میدهد تا قابلیتهایی مثل دیدن، ترجمه همزمان گفتار و نوشتار، تحلیل داده، ارائه پیشنهادهای کاربردی و غیره را در سطح پیشرفته بدست آورند.
برای پاسخ ساده به این سوال که هوش مصنوعی چیست میتوان عبارت هوش مصنوعی یا همان Artificial Intelligence را تفکیک کرد و ابتدا درکی از هر کلمه به صورت مجزا بدست آورد.
- کلمه مصنوعی یا Artificial به آنچه گفته میشود که به صورت طبیعی بوجود نیامده و در واقع توسط انسانها ساخته شده است.
- کلمه هوش یا Intelligence نیز به توانایی تفکر و آموختن براساس تجربه گفته میشود.
حالا اگر این دو کلمه با هم ترکیب شوند، عبارت هوش مصنوعی (Artificial Intelligence) بدست میآید. حالا هوش مصنوعی چیست ؟ هوش مصنوعی به چیزی گفته میشود که طبیعی نیست اما میتواند تفکر کند و براساس تجربه یاد بگیرد و تصمیمگیری انجام دهد.
بنابراین به زبان ساده، هوش مصنوعی به توانایی تفکر یا یادگیری کامپیوتر یا ماشین گفته میشود. برای اینکه فردی هوشمند و دارای هوش تلقی شود، باید یادگیری اتفاق بیوفتد و فرد آموزش ببیند. در واقع انسانها هم از روز اولی که به دنیا میآیند هوشمند نیستند و برای تبدیل شدن به فردی هوشمند و باهوش باید تحت آموزش قرار بگیرند.
وقتی که انسانها یاد میگیرند، در واقع مواردی را به خاطر میسپارند و اطلاعاتی را در مغزشان ذخیره میکنند. سپس از این اطلاعات ذخیره شده در مغز برای تصمیمگیری هوشمندانه استفاده میشود. در خصوص ماشینها و هوش مصنوعی هم شرایط یکسان است و درست مشابه انسانها کامپیوترها هم باید ابتدا یاد بگیرند و نمیتوانند تا زمانی که آموزش ندیدهاند هوشمند شوند. بهتر است برای درک بهتر اینکه هوش مصنوعی چیست مثالی ساده ارائه شود.
مثالی ساده برای درک بهتر مفهوم هوش مصنوعی
برای مثال اگر فردی بخواهد رانندگی کند و اتومبیلی را براند، پیش از هر چیز باید موارد لازم را در مورد آن ماشین یاد بگیرد. فرد باید حتماً نحوه روشن کردن اتومبیل را بیاموزد؛ باید یاد بگیرد چگونه از دنده و پدالها استفاده کند و ماشین را به جلو براند. همچنین علائم رانندگی بسیار مهم هستند و فرد باید بتواند مفهوم هرکدام از آنها را درک کند و آنها را در مغز خود حفظ کرده باشد. به این ترتیب در حین رانندگی فرد میتواند براساس آموختههای خود تصمیمگیری کند.
کامپیوترها هم به همین شکل عمل میکنند. یادگیری در کامپیوترها با استفاده از دادهها اتفاق میافتد. ماشینها و کامپیوترها الگوهای موجود در دادهها را درک میکنند و سپس مدلهایی را میسازند و این مدلها برای تصمیمگیری مورد استفاده قرار میگیرند. بنابراین انجام کارهایی هوشمندانه توسط ماشین و کامپیوترهای ساخته شده توسط انسان را هوش مصنوعی مینامند.
امید است تا اینجا درک مطلوبی نسبت به این سوال که هوش مصنوعی چیست بدست آمده باشد. برای مشخص شدن اینکه آیا درک لازم نسبت به این سوال بدست آمده که هوش مصنوعی چیست سوالی چند گزینهای برای آزمایش فردی در ادامه ارائه شده است:
هوش مصنوعی به انگلیسی
معادل اصطلاح هوش مصنوعی به انگلیسی «Artificial Intelligence» است که به صورت «آرتیفیشال اینتلیجنس» تلفط میشود. مخفف یا سرنام «AI» نیز به طور گستردهای در زبان انگلیسی و حتی فارسی به جای Artificial Intelligence یا هوش مصنوعی استفاده میشود. همچنین سایر عبارتهایی که به نوعی در ارتباط با هوش مصنوعی به کار میروند و تقریباً در برخی موارد مترادف هوش مصنوعی به انگلیسی هستند در ادامه فهرست شدهاند:
- Robotics (رباتیک | ساخت ربات هوشمند)
- Development of ‘Thinking’ Computer Systems (توسعه سیستمهای کامپیوتری)
- Expert System یا Expert Systems (سیستمهای خبره)
- Intelligent Retrieval (بازیابی هوشمندی)
- Knowledge Enginerring (مهندسی دانش)
- Machine Learning (یادگیری ماشین)
- Natural Language Processing (پردازش زبان طبیعی)
- Neural Network یا Neural Networks (شبکههای عصبی)
در ارتباط با این سوال که هوش مصنوعی چیست همواره بحث یادگیری ماشین هم مطرح میشود و همیشه سوالاتی پیرامون ارتباط یادگیری ماشین با هوش مصنوعی وجود دارد. بنابراین در ادامه به این موضوع پرداخته شده است.
هوش مصنوعی و یادگیری ماشین
یادگیری ماشین (Machine Learning) که قبلا در مجله فرادرس راجع به آن صحبت کردیم در واقع بخشی از هوش مصنوعی به حساب میآید و کاربردی از AI است.
فرایند استفاده از مدلهای ریاضی ساخته شده براساس دادهها توسط ماشینهای کامپیوتری را یادگیری ماشین مینامند. هدف ماشین لرنینگ توسعه و ساخت سیستمی است که بتواند بدون دریافت دستورالعملهای دقیق و خط به خط، خودش یاد بگیرد و بیاموزد. در یادگیری ماشین سیستمی طراحی و ساخته میشود که به یادگیری ادامه میدهد و رفته رفته خودش را بر اساس تجربه بدست آمده بهبود میدهد.
به قابلیت سیستمهای کامپیوتری برای تقلید از عملکردهای شناختی انسان مانند یادگیری، حل مسئله و سایر موارد هوش مصنوعی گفته میشود. هوش مصنوعی از یادگیری ماشین استفاده میکند تا دانش مربوطه و مورد نیاز را بدست آورد. سپس هوش مصنوعی دانش بدست آمده را به وسیله شبیهسازی منطق و استدلال انسانگونه برای توصیه یا تصمیمگیری به کار میگیرد. در حالی که هوش مصنوعی علم گسترده تقلید از تواناییهای انسان است، یادگیری ماشین زیرمجموعه خاصی از هوش مصنوعی به حساب میآید که به ماشین آموزش میدهد چگونه یاد بگیرد.
یکی دیگر از سوالات رایج پیرامون اینکه هوش مصنوعی چیست این است که هوش مصنوعی چه کارهایی انجام میدهد؟ بنابراین بهتر است در ادامه به این بحث پرداخته شود.
هوش مصنوعی چه کارهایی انجام می دهد؟
تقلید از ساختار مغز انسان، درک متقابل و کمک دوطرفه، خودآموزی و بازاندیشی در مورد گونههای مختلف حیات بیولوژیکی، جایگزینی افراد در مشاغل مختلف و تقلب در بازیهای کامپیوتری همگی تنها برخی از کارهایی هستند که امروزه هوش مصنوعی انجام میدهد. در این بخش سعی شده است تا به برخی از تواناییها و قدرتهای ماورایی هوش مصنوعی پرداخته شود.
هوش مصنوعی در پزشکی
آلفابت (Alphabet) شرکت مادر گوگل، اخیراً آزمایشگاههایی یکدست و همسان ساخته است که برای یافتن داروهای جدید با استفاده از هوش مصنوعی شرکت DeepMind (از شرکتهای زیرمجموعه گوگل) تاسیس شدهاند. هدف این سازمان بازتعریف فرایند کشف دارو از صفر و یافتن راههایی جدید برای درمان بیماریها با استفاده از هوش مصنوعی است. این آزمایشگاهها نه تنها دادهها را تجزیه و تحلیل خواهند کرد بلکه مدلهایی قدرتمند، پیشبینی کننده و مولد را از پدیدههای پیچیده بیولوژیکی خواهند ساخت.
در حالی که هنوز هیچ کس در تلاش برای یافتن درمان بیماریهای مختلف با استفاده از شبکههای عصبی به پیشرفت قابل توجهی دست پیدا نکرده است، شرکت DeepMind در حال حاضر در هوش مصنوعی حرف اول را میزند و سیستم یادگیری الگوریتم این شرکت انطباقپذیرترین سیستم موجود است که میتوان آن را برای اهداف و مقاصد مختلف به کار گرفت.
آموزش ربات ها با هوش مصنوعی برای انجام کارهای مختلف
امروزه از هوش مصنوعی یا همان شبکههای عصبی برای آموزش رباتها نیز به طور گسترده استفاده میشود. برای مثال با استفاده از مدلی جدید بر اساس هوش مصنوعی، مهندسان دانشگاه MIT موفق شدهاند تا رباتها را برای حمل و نگه داشتن هزاران شی مختلف با استفاده از بازوهای مکانیکی خود آموزش دهند. این کار با استفاده از یادگیری تقویتی و بدون شبیهسازی انجام شده و نتیجه کار ساخت شبیهسازی دست انسان گونه است که میتواند بیش از ۲ هزار شی مختلف را بردارد و آنها را با استفاده از بازوهای مکانیکی خود لمس کند و حرکت دهد.
علاوه بر آن جالب اینجاست که این سیستم برای بلند کردن شی و نگه داشتن آن در دستانش حتی نیازی نداشت بداند دقیقاً چه چیزی را قرار است بردارد. تا اینجا نرخ موفقیت رباتی که از این سیستم استفاده میکند بسته به نوع شی متفاوت است اما در طول زمان الگوریتم خودش را ارتقا خواهد داد و باعث میشود رباتها مهارت بیشتری پیدا کنند و تطبیقپذیرتر شوند.
آموزش مهارت های اجتماعی به ربات ها با استفاده از هوش مصنوعی
الگوریتم دیگری به وسیله محقان دانشگاه MIT ساخته شده است که به رباتها مهارتهای اجتماعی و به طور خاص همکاری دوجانبه را آموزش میدهد. مدلهای ریاضی جدید به گونهای طراحی شدهاند که به ماشینها درکی از رفتارهای فیزیکی و اجتماعی رباتهای دیگر را میآموزند. بنابراین اگر رباتی قرار است رفتاری منطقی و با معنی را به لحاظ اجتماعی انجام دهد، چون رفتار خوبی است، ربات دیگر باید در انجام آن کار به این ربات کمک کند. یا اگر رباتی بخواهد عمل بدی را انجام دهد، ربات فرضی دیگر باید مانع از آن شود.
محققان در تلاشند تا رباتها را به شبکه عصبی مخصوصی مجهز کنند که فرایند تجربه اجتماعی را سرعت میبخشد. علاوه بر این، آنها در حال کار روی سیستم حسگر ۳ بعدی هستند که به رباتها امکان میدهد تا عملیات پیچیدهتری را به تنهایی انجام دهند. مثلاً بتوانند از لوازم خانگی استفاده کنند. تمام اینها به رباتها امکان خواهد داد تا تعاملاتشان را نه تنها بین خودشان، بلکه میان انسانها و رباتها هم افزایش دهند.
شبیه سازی ساختار مغز انسان با هوش مصنوعی
یکی از اکتشافات شگفتآور دیگر هم در دانشکده تحقیقات مغزی موسسه فناوری ماساچوست یا همان MIT محقق شده است. دانشمندان به این مهم دست یافتند که در حین طبقهبندی رایحهها، شبکههای عصبی مصنوعی ساختاری را به کار میگیرند که بسیار شبیه به ساختار بویایی مغز انسان است. انسانها و سایر حیوانات اطلاعات بویایی را به طور مشابهی در مغزشان انجام میدهند.
با وجود اینکه در فرایند آموزش الگوریتمهایی برای طبقهبندی رایحهها، دانشمندان قصد کپیبرداری از مغز موجودات زنده را نداشتند، اگرچه در روند حل این مسئله شبکه عصبی مصنوعی به میل خود شبکه بیولوژیکی بویایی را بازتولید کرد.
از طرفی این رویداد شگفتانگیز طراحی بهینه سیستمهای بیولوژیکی را نشان میدهد. از طرف دیگر، این مسئله امکان مدلسازی کل مغز انسان را هم فراهم میکند. تخصص در یکی دیگر از مهمترین کارکردها و قابلیتهای مغز نیز اخیراً به وسیله هوش مصنوعی بدست آمده است. این دستاورد جدید شناسایی رابطههای علت و معلولی را انجام میدهد.
جهت یابی خودرو در محیط های مختلف با هوش مصنوعی
محققان MIT ثابت کردهاند که نوع خاصی از شبکههای عصبی قابلیت یادگیری ساختار تصادفی و واقعی کاری را دارند که برای انجام آن آموزش دیده است. این تحقیقات روی شبکههای عصبی مختص جهتیابی صورت گرفتهاند و بهگونهای طراحی شدهاند تا بتوانند اتومبیل بدون سرنشین را در جاده برانند یا مسئولیت جهتیابی پهبادها را بر عهده بگیرند.
هدف این است که وقتی یک شبکه عصبی آموزش داده میشود، نمیتوان به طور قطعی اطمینان حاصل کرد که مدل ساخته شده آیا محدوده جاده را خط کشیهای روی آسفالت در نظر گرفته است یا بر اساس بوتههای اطراف جاده عمل میکند.
اگر الگوریتم دادههای اشتباهی را برای آموزش انتخاب کرده باشد، در صورت تغییر محیط، امکان انجام وظیفه محوله را نخواهد داشت. محققان از چیزی به نام شبکههای عصبی سیال (Liquid Neural Network) استفاده میکنند که میتوانند معادلات پایهای خود را تغییر دهند تا خود را به طور مداوم با دادههای ورودی جدید تطبیق دهند.
یک سیستم یادگیری عمیق (Deep Learning) با اقتباس از مغز انسان که برپایه چنین شبکههایی ساخته شده است نتیجه یکسانی را نسبت به الگوریتمهای استاندارد تحت شرایط استاندارد از خود نشان داده است. اما برخلاف شبکههای عصبی رایج، این سیستم جدید تحت شرایط مختلفی مثل جهتیابی در مه، باران شدید یا سایر تغییرات آب و هوایی به خوبی عمل میکند.
همانطور که تا اینجا شرح داده شد، کارهای بسیاری را میتوان با استفاده از هوش مصنوعی انجام داد و این حوزه پتانسیل بسیار بالایی دارد و دستاوردهای بسیار اعجابآوری به وسیله هوش مصنوعی قابل تحقق هستند. اما شرح تمام کارهایی که هوش مصنوعی انجام میدهد بسیار طولانی، غیرممکن و از حوصله این مقاله خارج است. اکثر افرادی که سوال دارند هوش مصنوعی چیست معمولاً به دنبال دوره هوش مصنوعی هم هستند. بنابراین در ادامه به معرفی مجموعه دورههای آموزش هوش مصنوعی پرداخته شده است.
شرکت هوش مصنوعی
امروزه در حدود ۵۰ درصد شرکتهای سراسر دنیا حداقل در یکی از عملکردهای کسب و کار خود از هوش مصنوعی استفاده میکنند. این مسئله باعث شده است میزان تقاضا برای به کارگیری روشهای هوش مصنوعی از سوی برترین شرکتهای فناوری در جهان به میزان زیادی افزایش داشته باشد.
ارزش بازار جهانی هوش مصنوعی در سال ۲۰۲۰ تقریباً حدود ۶۲ درصد تحمین زده شده است و انتظار میرود این میزان در ۶ سال آینده ۴۰ درصد رشد داشته باشد. هوش مصنوعی و فناوریهای مربوط به آن مثل یادگیری ماشین، پردازش زبان طبیعی، تشخیص شی و صدا و سایر موارد میتوانند تعداد زیادی از مشکلات کسب و کارها را با میزان زیادی از بهینگی و دقت رفع کنند.
در اکثر شرکتهای بسیار بزرگ مثل آمازون، اپل و مایکروسافت بخشی از شرکت یا یکی از شرکتهای زیر مجموعه آنها به توسعه قابلیتهای عملکردی هوش مصنوعی اختصاص دارد. مثلاً شرکت DeepMind که یکی از پیشتازان هوش مصنوعی به حساب میآید، زیرمجموعه شرکت مادر گوگل یعنی آلفابت است. برخی شرکتهای مستقل کوچکتر هم وجود دارند که تمرکز اصلی آنها هوش مصنوعی محسوب میشود. در ادامه تعدادی از برترین شرکتهای هوش مصنوعی معرفی شدهاند.